イベント
月曜解析セミナー:On some properties of modulation spaces as Banach algebras, 小林 政晴 氏
2025年4月21日 開催
Time:16:30-17:30
Place:理学部3号館3-204室
Organizer:小林 政晴、洞 彰人、長谷部 高広、浜向 直、佐藤 僚亮
Speaker:小林 政晴 氏 (北海道大学)
Title:On some properties of modulation spaces as Banach algebras
Abstract:We give some properties of the modulation spaces $M^{p,1}_s(\mathbf{R}^n)$ as commutative Banach algebras. In particular, we show the Wiener-Lévy theorem for $M^{p,1}_s(\mathbf{R}^n)$, and clarify the sets of spectral synthesis for $M^{p,1}_s (\mathbf{R}^n)$ by using the “ideal theory for Segal algebras” developed in H. Reiter. The inclusion relationship between $M^{p,1}_0 (\mathbf{R})$ and $\mathit{FA}_p(\mathbf{R})$ is also determined. This talk is based on joint work with Hans. G. Feichtinger (University of Vienna, OEAW) and Enji Sato (Yamagata University).