イベント

偏微分方程式セミナー: Boundedness of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system, 永井 敏隆

2018年1019日 開催

開催日時

2018年10月19日 16時30分 ~ 2018年10月19日 17時30分

場所

北海道大学理学部3号館3-309室

講演者

永井 敏隆 氏 (広島大学)

We consider the Cauchy problem for an attraction-repulsion chemotaxis system in two-dimensional space. The system consists of three partial differential equations; a drift-diffusion equation incorporating terms for both chemoattraction and chemorepulsion, and two elliptic equations. It is known that there is a blowing-up solution in finite time to the Cauchy problem in the attractive dominant case where the coefficient of the attractant is larger than that of the repellent.
In this talk, we discuss the boundedness of nonnegative solutions to the Cauchy problem.

世話人:黒田 紘敏、浜向 直