数学に関するエピソード(3)

コーヒーカップやドーナツなど、何かの形に「きれいだな」「おもしろい形だな」「デコボコしてるな」「とんがってるな」「穴があいているな」と感じるのは、「図形の科学」と呼ばれる幾何学への第一歩。曲面の「曲がり方」を調べることで、「形」を決定する『ガウス・ボンネの定理』ってどんな定理なのだろう?

よく知られているように三角形の内角の和は180度、四角形の内角の和は360度ですが、外角に注目することで、「凸多角形の外角の和は常に360度(2π)」が知られています。これは多角形の頂点の「曲がり具合を表す量(外角)」を足し上げると常に2πになるということです。なめらかな曲面には各点で「曲率」と呼ばれる「曲がり具合を表す量」が定まって、それを全部足して(積分して)得られる値は、曲面をグニャグニャ変形しても変わらない一定の値になり、それが 2π(2-2g) と一致することをガウス・ボンネの定理は主張します(ただし g は曲面の穴の数)。ちなみにコーヒーカップとドーナツはともに穴の数は g=1 なので、「曲がり具合の和」は0になります。ガウス・ボンネの定理はトポロジーと微分幾何という二つの分野を結ぶ定理で、この美しい公式を一般化したいという多くの数学者の努力が、指数定理など20世紀の多様体の幾何学の発展の原動力になりました。