• イベント
  • ニュース
  • 研究・活動レポート 彩
  • お問い合わせ・アクセス
    • 理学院
    • 理学研究院
    • 北海道大学
  • Japanese
  • English

Search

北海道大学 理学部 北海道大学 理学部

    • 概要・教育方針
    • 理学部長メッセージ
    • 北大の理学
    • 歴史
    • 理学部ゆかりの研究者
    • 大学院と関連組織
    • 施設・設備
    • 年間スケジュール
    • 広報・刊行物
    • 理学のマーク
    • 理学部創立100周年記念事業
    • 数学科
    • 物理学科
    • 化学科
    • 生物科学科(生物学)
    • 生物科学科(高分子機能学)
    • 地球惑星科学科
    • 数学科教員一覧
    • 物理学科教員一覧
    • 化学科教員一覧
    • 生物科学科(生物学)教員一覧
    • 生物科学科(高分子機能学)教員一覧
    • 地球惑星科学科教員一覧
    • 北大の理学
    • 研究・活動レポート 彩
    • 動画・超領域対談
    • オープンキャンパス
    • 入試情報・資料請求
    • 4つのポリシー
    • 入学から卒業まで
    • 卒業後の進路
    • よくある質問
    • 大学院入試
    • 就職支援
    • 各種証明書の発行
    • 学生生活で困った時は
    • 理学・生命科学事務連絡
    • 寄附のお願い
    • 公開講座
    • 各種証明書の発行
    • 理学部同窓会などのご案内
    • 産学連携
    • 理学部創立100周年記念事業
  • Japanese
  • English

Search

北海道大学 理学部

  • 北大理学部とは
    • 概要・教育方針
    • 理学部長メッセージ
    • 北大の理学
    • 歴史
    • 理学部ゆかりの研究者
    • 大学院と関連組織
    • 施設・設備
    • 年間スケジュール
    • 広報・刊行物
    • 理学のマーク
    • 理学部創立100周年記念事業
  • 学科・教員
    • 数学科
    • 物理学科
    • 化学科
    • 生物科学科(生物学)
    • 生物科学科(高分子機能学)
    • 地球惑星科学科
    • 数学科教員一覧
    • 物理学科教員一覧
    • 化学科教員一覧
    • 生物科学科(生物学)教員一覧
    • 生物科学科(高分子機能学)教員一覧
    • 地球惑星科学科教員一覧
  • 北大理学部を目指す方へ
    • 北大の理学
    • 研究・活動レポート 彩
    • 動画・超領域対談
    • オープンキャンパス
    • 入試情報・資料請求
    • 4つのポリシー
    • 入学から卒業まで
    • 卒業後の進路
    • よくある質問
  • 在学生とその保護者の方へ
    • 大学院入試
    • 就職支援
    • 各種証明書の発行
    • 学生生活で困った時は
    • 理学・生命科学事務連絡
  • 企業・一般・卒業生の方へ
    • 寄附のお願い
    • 公開講座
    • 各種証明書の発行
    • 理学部同窓会などのご案内
    • 産学連携
    • 理学部創立100周年記念事業
  • イベント
  • ニュース
  • 研究・活動レポート 彩
  • お問い合わせ・アクセス
  • 関連組織
    • 理学院
    • 理学研究院
    • 北海道大学

ニュース

栄養ストレスに応じた植物細胞内リン酸化シグナルダイナミクスを網羅的に解明(理学研究院:生物科学部門 准教授 佐藤長緒、教授 山口淳二)

研究ニュース
2020年6月16日

北海道大学 理学研究院 生物科学部門・形態機能学系の佐藤長緒准教授と山口淳二教授らの研究グループは、植物の栄養ストレス応答に関する新しい知見を論文発表しました。詳しい日本語解説はこちらから読むこともできますが、以下、佐藤准教授による解説です。


私達は、国内および海外の研究者らとの協力しながら、生命を支える複雑な細胞内システムを包括的に理解する取組みを始めています。

本研究では、細胞内のリン酸化シグナルダイナミクスを網羅的に解析し、重要な代謝物の変動や遺伝子発現解析と結びつけることで、これまで未知であった植物細胞内の栄養応答シグナル伝達ネットワークの全体像を理解することに成功しました。

具体的には、生物に必須の栄養素である糖(炭素、C)と窒素(N)のバランス「C/Nバランス」に着目して、この栄養バランスの乱れにより起こるストレスに応答した細胞内リン酸化ダイナミクスを網羅的に解析しました。

真核生物の細胞内において、タンパク質のリン酸化修飾は、細胞内シグナル伝達系の分子スイッチとして重要な役割を果たします。実際にこれまでの私達の研究からも、植物の栄養シグナル伝達に関与する鍵因子としてリン酸化酵素(キナーゼ)やその標的タンパク質が発見されています。その一方で、数千を超える細胞内のタンパク質を対象としてグローバルなリン酸化シグナル変動の実態を把握することは、これまでの個別遺伝子の機能解析だけでは困難であり、未知のものでした。

本研究では、先端的なマススペクトロメトリー装置を用いたリン酸化プロテオーム解析という手法を活用することで、細胞内のリン酸化シグナルの網羅的な検出と定量的な比較解析を行いました。その結果、1785のリン酸化ペプチドを検出し、193個のタンパク質のリン酸化レベルがC/Nバランスに応じて変化していることが分かりました。その中には、糖や窒素代謝制御に関わる代謝酵素群や輸送体、タンパク質合成(翻訳)関連因子が含まれており、加えて、転写因子やキナーゼといった多くのシグナル伝達系タンパク質が同定されました(図1)。

図1: C/N応答性リン酸化タンパク質ネットワーク

こうしたリン酸化プロテオーム解析の結果から、C/Nシグナルの上流制御因子としてSnRK1キナーゼ(酵母Snf1、哺乳類AMPKホモログ)が重要な役割を果たすことを見出しました。

また、新規の受容体型キナーゼLMK1(Leucine-rich repeat Malectin Kinase 1と命名)を単離し、このキナーゼが細胞死制御に関与することを発見しました。細胞死は、植物の病原体抵抗性や老化制御といった生理現象で非常に重要な意義を有します。今回単離したLMK1は、受容体型キナーゼとして、栄養シグナルとこうした生理現象を結びつける鍵因子として働いている可能性が示唆されます。

図2: 新規受容体型キナーゼLMK1に細胞死誘導
(A)LMK1-GFPタンパク質細胞内局在性の蛍光顕微鏡観察
(B)LMK1過剰発現による細胞死誘導(LMK1D805A:キナーゼドメイン変異型LMK1)

現在このリン酸化プロテオーム解析で得られたC/Nシグナル関連因子群の機能に関して、さらに深く研究を進めています。

今回取得したリン酸化プロテオーム解析データは、植物栄養応答の分子機構を理解するためのプラットフォーム構築に貢献し、他の作物種も含めた様々な応用研究の基盤情報となることが期待されます。

なお本研究は、北海道大学、理化学研究所、Max-Planck-Institute for Plant Breeding Research(ドイツ)、Max Planck Institute of Molecular Plant Physiology(ドイツ)、奈良先端科学技術大学院大学、Hohenheim大学(ドイツ)との共同研究として実施されました。

 

論文:Li X, Sanagi M, Lu Y, Nomura Y, Stolze SC, Yasuda S, Saijo Y, Schulze WX, Regina F, Stitt M, Lunn JE, Nakagami H*, Sato T*, Yamaguchi J (2020) Protein phosphorylation dynamics under carbon/nitrogen-nutrient stress and identification of a cell death-related receptor-like kinase in Arabidopsis. Frontiers in Plant Science 11: 377. (*Corresponding authors) doi: 10.3389/fpls.2020.00377.

 

関連リンク:理学部 生物科学科(生物学)ウェブサイト

  • X
  • Facebook
  • LINE

投稿ナビゲーション

前の記事
一覧に戻る
次の記事

スペシャルコンテンツ

学科紹介

  • 数学科 数学科 Mathematics
  • 物理学科 物理学科 Physics
  • 化学科 化学科 Chemistry
  • 生物科学科/生物学 生物科学科/生物学 Biological Sciences
    "Biology"
  • 生物科学科/高分子機能学 生物科学科/高分子機能学 Biological Sciences
    "Macromolecular Functions"
  • 地球惑星科学科 地球惑星科学科 Earth and Planetary
    Sciences

理学部5学科6専修のウェブサイト

  • 数学科
  • 物理学科
  • 化学科
  • 生物科学科(生物学)
  • 生物科学科(高分子機能学)
  • 地球惑星科学科

理学部卒業生が進学している主な大学院

  • 大学院理学院
  • 大学院生命科学院
  • 大学院総合化学院

理学部の教員が所属している主な組織

  • 理学研究院
  • 先端生命科学研究院
  • 地球環境科学研究院
  • 低温科学研究所
  • 電子科学研究所
  • 遺伝子病制御研究所
  • 触媒科学研究所
  • 北方生物圏フィールド科学センター
  • 総合博物館

理学研究院附属研究施設等

  • 地震火山研究観測センター
  • ゲノムダイナミクス研究センター
  • 原子核反応データベース研究開発センター(JCPRG)

理学研究院内センター・推進室等

  • 分子情報連携研究センター
  • 宇宙観測基礎データセンター
  • 元素戦略教育研究センター
  • 国際化支援室(OIAS)
  • 理学研究院 アクティブラーニング推進室

学内共同利用施設

  • 極低温液化センター
  • 高分解能核磁気共鳴装置研究室(NMR)
  • 地球惑星固体物質解析システム研究室
  • 量子干渉方式広温度領域磁化測定研究室

技術部

  • 理学研究院等技術部

関連組織、プロジェクト

  • Integrated Science Program (EN)
  • 科学技術コミュニケーション教育研究部門(CoSTEP)
  • 北海道大学 物質科学フロンティアを開拓するAmbitiousリーダー育成プログラム
  • WPI 北海道大学化学反応創成研究拠点 ICReDD
  • 北海道大学理工系大学院教育改革 Ph.Discover
  • 北海道大学理学部同窓会
北海道大学理学部同窓会
北海道大学
北海道大学理学研究院
先端生命科学研究院
北海道大学理学院
北海道大学大学院生命科学院
北海道大学大学院総合化学院
北海道大学国際化支援室(OIAS)
Ph.Discover

SMatS

理学ナビ

  • イベント
  • ニュース
  • お問い合わせ・アクセス
  • サイトポリシー
  • Japanese
  • English
  • OfficialSNS