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In recent years, the unified theory of information and thermodynamics has been intensively dis-
cussed in the context of stochastic thermodynamics. The unified theory reveals that information
theory would be useful to understand non-stationary dynamics of systems far from equilibrium. In
this letter, we have found a new link between stochastic thermodynamics and information theory
well known as information geometry. By applying this link, an information geometric inequality
can be interpreted as a thermodynamic uncertainty relationship between speed and thermodynamic
cost. We have numerically applied an information geometric inequality to a thermodynamic model
of biochemical enzyme reaction.

PACS numbers: 02.40.-k, 05.20.-y, 05.40.-a, 05.70.Ln, 89.70.-a

The crucial relationship between thermodynamics
and information theory has been well studied in last
decades [1]. Historically, thermodynamic-informational
links had been discussed in the context of the second
law of thermodynamics and the paradox of Maxwell’s
demon [2]. Recently, several studies have newly revealed
thermodynamic interpretations of informational quanti-
ties such as the Kullback-Leibler divergence [3], mutual
information [4–6], the transfer entropy and information
flow [7–19]. The above interpretations of informational
quantities are based on the theory of stochastic thermo-
dynamics [20, 21], which mainly focus on the entropy
production in stochastic dynamics of small systems far
from equilibrium.

Information thermodynamic relationship has been at-
tracted not only in terms of Maxwell’s demon, but also
in terms of geometry [22–28]. Indeed, differential geo-
metric interpretations of thermodynamics have been dis-
cussed especially in a near-equilibrium system [22, 29–
34]. Moreover, the technique of differential geometry in
information theory, well known as information geome-
try [35], has received remarkable attention in the field of
neuroscience, signal processing, quantum mechanics, and
machine learning [36–38]. In spite of the deep link be-
tween information and thermodynamics, the direct con-
nection between thermodynamics and information geom-
etry has been elusive especially for non-stationary and
non-equilibrium dynamics. For example, G. E. Crooks
discovered a link between thermodynamics and informa-
tion geometry [22, 32] based on the Gibbs ensemble, and
then his discussion is only valid for a near-equilibrium
system.

In this letter, we discover a fundamental link be-
tween information geometry and thermodynamics based
on stochastic thermodynamics for the master equation.
We mainly report two inequalities derived thanks to in-
formation geometry, and interpret them within the the-
ory of stochastic thermodynamics. The first inequality
connects the environmental entropy change rate to the
mean change of the local thermodynamic force rate. The

second inequality can be interpreted as a kind of ther-
modynamic uncertainty relationships or thermodynamic
trade-off relationships [39–51] between speed of a transi-
tion from one state to another and thermodynamic cost
related to the entropy change of thermal baths in a near-
equilibrium system. We numerically illustrate these two
inequalities on a model of biochemical enzyme reaction.
Stochastic thermodynamics.– To clarify a link between

stochastic thermodynamics and information geometry,
we here start with the formalism of stochastic thermo-
dynamics for the master equation [20, 21], that is also
known as the Schnakenberg network theory [52, 53].
We here consider a (n + 1)-states system. We assume

that transitions between states are induced by nbath-
multiple thermal baths. The master equation for the
probability px (≥ 0,

∑n
x=0 px = 1) to find the state at

x = {0, 1, . . . , n} is given by

d

dt
px =

nbath
∑

ν=1

n
∑

x′=0

W
(ν)
x′→xpx′ , (1)

where W
(ν)
x′→x is the transition rate from x′ to x induced

by ν-th thermal bath. We assume a non-zero value of

the transition rate W
(ν)
x′→x > 0 for any x 6= x′. We also

assume the condition

n
∑

x=0

W
(ν)
x′→x = 0, (2)

or equivalently W
(ν)
x′→x′ = −∑x 6=x′ W

(ν)
x′→x < 0, which

leads to the conservation of probability d(
∑n

x=0 px)/dt =
0. This equation (2) indicates that the master equation
is then given by the thermodynamic flux from the state
x′ to x [52],

J
(ν)
x′→x :=W

(ν)
x′→xpx′ −W

(ν)
x→x′px, (3)

d

dt
px =

nbath
∑

ν=1

n
∑

x′=0

J
(ν)
x′→x. (4)
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If dynamics are reversible (i.e., J
(ν)
x′→x = 0 for any x, x′

and ν), the system is said to be in thermodynamic equi-
librium. If we consider the conjugated thermodynamic
force

F
(ν)
x′→x := ln[W

(ν)
x′→xpx′ ]− ln[W

(ν)
x→x′px], (5)

thermodynamic equilibrium is equivalently given by

F
(ν)
x′→x = 0 for any x, x′ and ν.
In stochastic thermodynamics [21], we treat the en-

tropy change of thermal bath and the system in a stochas-
tic way. In the transition from x′ to x, the stochastic
entropy change of ν-th thermal bath is defined as

∆σ
bath(ν)
x′→x := ln

W
(ν)
x′→x

W
(ν)
x→x′

, (6)

and the stochastic entropy change of the system is defined
as the stochastic Shannon entropy change

∆σsys
x′→x := ln px′ − ln px, (7)

respectively. The thermodynamic force is then given by
the sum of entropy changes in the transition from x′ to

x induced by ν-th thermal bath F
(ν)
x′→x = ∆σ

bath(ν)
x′→x +

∆σsys
x′→x. This fact implies that the system is in equi-

librium if the sum of entropy changes is zero for any
transitions.
The total entropy production rate Σ̇tot is given by the

sum of the products of thermodynamic forces and fluxes
over possible transitions. To simplify notations, we intro-
duce the set of directed edges E = {(x′ → x, ν)|0 ≤ x′ <
x ≤ n, 1 ≤ ν ≤ nbath} which denotes the set of all pos-
sible transitions between two states. The total entropy
production rate is then given by

Σ̇tot :=
∑

(x′→x,ν)∈E

J
(ν)
x′→xF

(ν)
x′→x = 〈F 〉, (8)

where a parenthesis 〈· · · 〉 is defined as 〈A〉 :=
∑

(x′→x,ν)∈E J
(ν)
x′→xA

(ν)
x′→x for any function of edge A

(ν)
x′→x.

Because signs of the thermodynamic force F
(ν)
x′→x and the

flux J
(ν)
x′→x are same, the total entropy production rate is

non-negative

〈F 〉 = 〈∆σbath〉+ 〈∆σsys〉 ≥ 0, (9)

that is well known as the second law of thermodynamics.
Information geometry.– Next, we introduce informa-

tion theory well known as information geometry [35].
In this letter, we only consider the discrete distribution
group p = (p0, p1, . . . , pn), px ≥ 0, and

∑n
x=0 px = 1.

This discrete distribution group gives the n-dimensional
manifold Sn, because the discrete distribution is given
by n+1 parameters (p0, p1, . . . , pn) under the constraint
∑n

x=0 px = 1. To introduce a geometry on the mani-
fold Sn, we conventionally consider the Kullback-Leibler

FIG. 1: (color online). Schematic of information geometry on
the manifold S2. The manifold S2 leads to the sphere surface
of radius 2 (see also SI). The statistical length L is bounded
by the shortest length D = 2θ = 2 cos−1(rini · rfin).

divergence [55] between two distributions p and p
′ =

(p′0, p
′
1, . . . , p

′
n) defined as

DKL(p||p′) :=

n
∑

x=0

px ln
px
p′x
. (10)

The square of the line element ds is defined as the second-
order Taylor series of the Kullback-Leibler divergence

ds2 :=

n
∑

x=0

(dpx)
2

px
= 2DKL(p||p+ dp), (11)

where dp = (dp0, dp1, . . . , dpn) is the infinitesimal dis-
placement that satisfies

∑n
x=0 dpx = 0. This square of

the line element is directly related to the Fisher infor-
mation metric [54] (see also Supplementary Information
(SI)).
The manifold Sn leads to the geometry of the n-sphere

surface of radius 2 (see also Fig. 1), because the square
of the line element is also given by ds2 =

∑n
x=0(2drx)

2

under the constraint r · r =
∑

x(
√
px)

2 = 1 where r

is the unit vector defined as r = (r0, r1, . . . , rn) :=
(
√
p0,

√
p1, . . . ,

√
pn) and · denotes the inner product.

The statistical length L [56, 57]

L :=

∫

ds =

∫

ds

dt
dt, (12)

from the initial state rini to the final state rfin is then
bounded by

L ≥ 2 cos−1(rini · rfin) := D(rini; rfin), (13)

because D(rini; rfin) = 2θ is the shortest length between
rini and rfin on the n-sphere surface of radius 2, where
θ is the angle between rini and rfin given by the inner
product rini · rfin = cos θ.
Stochastic thermodynamics of information geometry.–

We here discuss a relationship between the line element
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and conventional observables of stochastic thermody-
namics, which gives a stochastic thermodynamic inter-
pretation of information geometric quantities.
By using the master equation (1) and definitions of the

line element and thermodynamic quantities Eqs. (5), (6)
and (11), we obtain stochastic thermodynamic expres-
sions of ds2/dt2 (see also SI),

ds2

dt2
=

n
∑

x=0

px
d

dt

(

− 1

px

dpx
dt

)

(14)

= −
n
∑

x=0

px
d

dt

(

nbath
∑

ν=1

n
∑

x′=0

W
(ν)
x→x′e

−F
(ν)

x→x′

)

(15)

=

〈

d∆σbath

dt

〉

−
〈

dF

dt

〉

. (16)

Equation (15) implies that geometric dynamics are driven

by the thermodynamic factor exp[−F (ν)
x→x′ ], that is well

discussed in the context of stochastic thermodynamics
(especially in the context of the fluctuation theorem [58–
63]). The time evolution of the line element ds2/dt2

is directly related to the expected value of the time
derivative of the rate-weighted thermodynamic factor

W
(ν)
x→x′e

−F
(ν)

x→x′ .
Another expression Eq. (16) gives a stochastic ther-

modynamic interpretation of information geometry, es-
pecially in case of a near-equilibrium system. The con-

dition of an equilibrium system is given by F
(ν)
x′→x = 0

for any x′, x and ν. Then, the square of the line ele-
ment is given by the entropy change in thermal baths
ds2 ≃

〈

d∆σbath
〉

dt in a near-equilibrium system.
For example, in a near-equilibrium system, the

probability distribution is assumed to be the canon-
ical distribution px = exp(β(φ − Hx)), where φ :=
−β−1 ln[

∑n
x=0 exp(−βHx))] is the Helmholtz free energy,

β is the inverse temperature andHx is the Hamiltonian of
the system in the state x. To consider a near-equilibrium
transition, we assume that β andHx can depend on time.
From ds2 = [

〈

d∆σbath
〉

− 〈dF 〉]dt = −〈d∆σsys〉 dt, we
obtain ds2 = −〈d∆σsys〉 dt = −〈d(β∆H)〉dt in a near
equilibrium system, where ∆Hx′→x := Hx − Hx′ is the
Hamiltonian change from the state x′ to x. Because
−β∆H can be considered as the entropy change of ther-
mal bath ∆σbath, an expression ds2 = −〈d(β∆H)〉dt for
the canonical distribution is consistent with a near equi-
librium expression ds2 ≃

〈

d∆σbath
〉

dt.
We also discuss the second order expansion of ds2/dt2

for the thermodynamic force in SI, based on the linear
irreversible thermodynamics [52]. Our discussion implies
that the square of the line element (or the Fisher in-
formation metric) for the thermodynamic forces is re-
lated to the Onsager coefficients. Due to the Cramér-
Rao bound [54, 55], the Onsager coefficients are directly
connected to a lower bound of the variance of unbiased
estimator for parameters driven by the thermodynamic
force.

Due to the non-negativity of the square of line element
ds2/dt2 ≥ 0, we have a thermodynamic inequality

〈

d∆σbath

dt

〉

≥
〈

dF

dt

〉

. (17)

The equality holds if the system is in a stationary state,
i.e., dpx/dt = 0 for any x. This result (17) implies that
the change of the thermodynamic force rate is transferred
to the environmental entropy change rate. The differ-
ence 〈d∆σbath/dt〉 − 〈dF/dt〉 ≥ 0 can be interpreted as
loss in the entropy change rate transfer due to the non-
stationarity. If the environmental entropy change does

not change in time (i.e., d∆σ
bath(ν)
x′→x /dt = 0 for any x′

and x), the thermodynamic force change tends to de-
crease (i.e., 〈dF/dt〉 ≤ 0) in a transition. We stress that
a mathematical property of the thermodynamic force in
this result is different from the second law of thermody-
namics 〈F 〉 ≥ 0.
From Eq. (16), the statistical length L =

∫ τ

0 dt(ds/dt)
from time t = 0 to t = τ is given by

L =

∫ t=τ

t=0

dt

√

〈

d∆σbath

dt

〉

−
〈

dF

dt

〉

. (18)

We then obtain the following thermodynamic inequality
from Eqs. (13) and (18),

∫ t=τ

t=0

dt

√

〈

d∆σbath

dt

〉

−
〈

dF

dt

〉

≥ D(r(0); r(τ)). (19)

The equality holds if the path of transient dynamics is a
geodesic line on the manifold Sn. This inequality gives a
geometric constraint of the entropy change rate transfer
in a transition between two probability distributions p(0)
and p(τ).
Thermodynamic uncertainty.– We finally reach to a

thermodynamic uncertainty relationship between speed
and thermodynamic cost. We here consider the action
C := (1/2)

∫ t=τ

t=0
dt(ds2/dt2) from time t = 0 to t = τ .

From Eq. (16), the action C is given by

C =
1

2

∫ t=τ

t=0

dt

[〈

d∆σbath

dt

〉

−
〈

dF

dt

〉]

. (20)

Especillay in case of a near-equilibrium system, the ac-
tion C is given by C ≃

∫ 〈

d∆σbath
〉

/2. If we assume
the canonical distribution, we have C = −

∫

〈d(β∆H)〉/2.
Even for a system far from equilibrium, we can consider
the action as a total amount of loss in the entropy change
rate transfer. Therefore, the action can be interpreted as
thermodynamic cost.
Due to the Cauchy-Schwarz inequality

∫ τ

0
dt
∫ τ

0
(ds/dt)2dt ≥ (

∫ τ

0
(ds/dt)dt)2 [22], we obtain

a thermodynamic uncertainty relationship between
speed τ and thermodynamic cost C

τ ≥ L2

2C . (21)
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FIG. 2: (color online). Numerical calculation of thermody-
namic quantities in the three states model of enzyme reaction.
We numerically shows the non-negativity of ds2/dt2 ≥ 0 and
ds2/dt2 = −〈dF/dt〉 + 〈d∆σbath/dt〉 in the graph. We also
show the total entropy change rate 〈F 〉 ≥ 0. We note that
d〈F 〉/dt is not equal to 〈dF/dt〉.

The equality holds if speed of dynamics ds2/dt2 does not
depend on time. By using the inequality (13), we also
have a weaker bound

τ ≥ [D(r(0); r(τ))]2

2C . (22)

In a transition from r(0) to r(τ)(6= r(0)), thermody-
namic cost C should be large if the transition time τ
is small. In case of a near-equilibrium system, we have
2C =

∫ 〈

d∆σbath
〉

(or 2C = −
∫

〈d(β∆H)〉), and then
the inequality is similar to the quantum speed limit that
is discussed in quantum mechanics [37]. We stress that
this result is based on stochastic thermodynamics, not
on quantum mechanics.
The inequality (22) gives the ratio between time-

averaged thermodynamic cost 2C/τ and square of the
velocity on manifold ([D(r(0); r(τ))]/τ)2 . Then, this ra-
tio

η :=
[D(r(0); r(τ))]2

2τC . (23)

quantifies an efficiency for power to speed conversion.
Due to the inequality (22) and its non-negativity, the
efficiency η satisfies 0 ≤ η ≤ 1, where η = 1 (η = 0)
implies high (low) efficiency.
Three states model of enzyme reaction.– We numer-

ically illustrate thermodynamic inequalities of informa-
tion geometry by using a thermodynamic model of bio-
chemical reaction. We here consider a three states model
(see also SI) that represents a chemical reaction A+B ⇋

FIG. 3: (color online). Numerical calculation of the thermo-
dynamic uncertainty relationship in the three states model
of enzyme reaction. We numerically shows the geometric in-
equality L ≥ D(r(0); r(τ )), the thermodynamic uncertainty
relationship τ ≥ L2/(2C) ≥ [D(r(0); r(τ ))]2/(2C), and the ef-
ficiency η in the graph.

AB with enzyme X ,

A+X ⇋ AX, (24)

A+B ⇋ AB, (25)

AX +B ⇋ AB +X. (26)

We here consider the probability distribution of states
x = A,AX,AB. We assume that the system is attached
to a single heat bath (nbath = 1) with inverse tempera-
ture β. The master equation is given by Eq. (1), where
the transition rates are supposed to be

W
(1)
A→AX = kAX+[X ], W

(1)
AX→A = kAX+e

−β∆µAX ,

W
(1)
A→AB = kAB+[B], W

(1)
AB→A = kAB+e

−β∆µAB ,

W
(1)
AX→AB = k+[B], W

(1)
AB→AX = k+e

−β∆µ[X ],
(27)

[X ] ([B]) is the concentration of X (B), kAX+, kAB+,
and k+ are reaction rate constants, and ∆µAX , ∆µAB,
and ∆µ are the chemical potential differences. In this

model, the entropy change of bath ∆σ
bath(ν)
x′→x is given by

this chemical potential difference (see also SI) [64].
In a numerical simulation, we set kAX+ = kAB+ =

k+ = 1, β∆µAX = 1, β∆µAB = 0.5, and β∆µ = 2.
We assume that the time evolution of the concentrations
is given by [X ] = tan−1(ωXt), [B] = tan−1(ωBt) with
ωX = 1 and ωB = 2, which means that the concen-
trations [X ] and [B] perform as control parameters. At
time t = 0, we set the initial probability distribution as
(pA, pAX , pAB) = (0.9998, 0.0001, 0.0001).
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In Fig. 2, we numerically show the inequality
〈d∆σbath/dt〉 ≥ 〈dF/dt〉. We check that this inequal-
ity does not coincide with the second law of thermody-
namics 〈F 〉 ≥ 0. We also check the thermodynamic un-
certainty relationship τ ≥ L2/(2C) in Fig. 3. Because
the path from the initial distribution (pA, pAX , pAB) =
(0.9998, 0.0001, 0.0001) to the final distribution is close
to the geodesic line, the thermodynamic uncertainty re-
lationship gives a tight bound of the transition time τ .

Conclusion.– In this letter, we reveal a link be-
tween stochastic thermodynamic quantities (J , F , ∆σsys,
∆σbath) and information geometric quantities (ds2, L, D,
C). Because the theory of information geometry is appli-
cable to various fields of science such as neuroscience, sig-
nal processing, machine learning and quantum mechan-
ics, this link would help us to understand a thermody-
namic aspect of such a topic. The trade-off relationship
between speed and thermodynamic cost Eq. (22) would
be helpful to understand biochemical reactions and gives
a new insight into recent studies of the relationship be-
tween information and thermodynamics in biochemical
processes [7, 42, 65–69].
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SUPPLEMENTARY INFORMATION

I. Intuitive proof of the fact that the manifold S2 gives the sphere surface of radius 2

We here intuitively show the fact that the manifold S2 gives the sphere surface of radius 2. The set of probability
p = (p0, p1, p2) satisfies the normalization

∑2
x=0 px = 1. The square of the line element ds is given by

ds2 =

2
∑

x=0

(dpx)
2

px
. (28)

We here introduce the polar coordinate system (φ, ψ) where p0 = (cosψ)2, p1 = (sinψ)2(cosφ)2, p2 = (sinψ)2(sinφ)2.

We can check that the normalization
∑2

x=0 px = 1 holds. By using the polar coordinate system, (dp0, dp1, dp2)
is given by dp0 = −2(cosψ)(sinψ)dψ, dp1 = 2(cosψ)(sinψ)(cosφ)2dψ − 2(cosφ)(sinφ)(sinψ)2dφ, and dp2 =
2(cosψ)(sinψ)(sin φ)2dψ + 2(cosφ)(sin φ)(sinψ)2dφ. From Eq. (28), we then obtain

ds2 = 4[(sinψ)2 + (cosψ)2(cosφ)2 + (cosψ)2(sinφ)2](dψ)2 + 0× (dφ)(dψ) + 4[(sinφ)2(sinψ)2 + (cosφ)2(sinψ)2](dφ)2

= 22[(dψ)2 + (sinψ)2(dφ)2]. (29)

Because the metric of the sphere surface of radius R is given by ds2 = R2[(dψ)2 + (sinψ)2(dφ)2], the manifold S2

gives the sphere surface of radius R = 2.

II. Detailed derivation of Eqs. (15) and (16) in the main text

We here discuss the detailed derivation of Eqs. (15) and (16) in the main text, and the relationship between the
square of the line element and the Fisher information metric.

By using the definition of the thermodynamic force F
(ν)
x′→x := ln[W

(ν)
x′→xpx′ ] − ln[W

(ν)
x→x′px], the master equation is

given by

d

dt
px =

nbath
∑

ν=1

n
∑

x′=0

W
(ν)
x→x′pxe

−F
(ν)

x→x′ . (30)

From Eqs. (28), (30) and
∑n

x=0 d
2px/dt

2 = 0, we obtain an expression Eq. (15) in the main text,

ds2

dt2
=

n
∑

x=0

1

px

(

dpx
dt

)2

=

n
∑

x=0

px
d

dt

(

− 1

px

)(

dpx
dt

)

=

n
∑

x=0

px
d

dt

(

− 1

px

)(

dpx
dt

)

−
n
∑

x=0

(

d2px
dt2

)

=

n
∑

x=0

px
d

dt

(

− 1

px

dpx
dt

)

= −
n
∑

x=0

px
d

dt

(

nbath
∑

ν=1

n
∑

x′=0

W
(ν)
x→x′e

−F
(ν)

x→x′

)

. (31)

http://arxiv.org/abs/1712.04311
http://arxiv.org/abs/1801.02242
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Let E[A] :=
∑n

x=0 pxA(x) be the expected value of any function A(x), and A(x) :=
∑nbath

ν=1

∑n
x′=0W

(ν)
x→x′A

(ν)
x→x′ be

the rate-weighted expected value of any function of edge A
(ν)
x→x′ with a fixed initial state x, respectively. By using

these notation, the result (31) can be rewritten as

ds2

dt2
= −E

[

d

dt
e−F

]

. (32)

We here mention that a parenthesis in the main text is given by 〈A〉 = E
[

A
]

if A
(ν)
x→x′ is an anti-symmetric function

A
(ν)
x→x′ = −A(ν)

x′→x. Because the thermodynamic force is an anti-symmetric function F
(ν)
x→x′ = −F (ν)

x′→x, the total

entropy production rate is given by Σ̇tot = E
[

F
]

. We also carefully mention that the expected value of e−F gives

E[e−F ] =
∑nbath

ν=1

∑n
x=0

∑n
x′=0 px′W

(ν)
x′→x = 0, compared to the integral fluctuation theorem 〈e−Ftraj〉traj = 1 with the

entropy production of trajectories Ftraj and the ensemble average of trajectories 〈· · · 〉traj [1, 2]. If the system is in a
stationary state, i.e., dpx/dt = 0 for any x, we have

E

[

d

dt
e−F

]

=
d

dt

(

E

[

e−F

])

= 0. (33)

From Eq. (31), we also obtain

ds2

dt2
=−

n
∑

x=0

px
d

dt

(

nbath
∑

ν=1

n
∑

x′=0

W
(ν)
x→x′e

−F
(ν)

x→x′

)

=−
n
∑

x=0

px

(

nbath
∑

ν=1

n
∑

x′=0

W
(ν)
x→x′

(

− d

dt
F

(ν)
x→x′

)

e−F
(ν)

x→x′

)

−
n
∑

x=0

px

(

nbath
∑

ν=1

n
∑

x′=0

(

d

dt
W

(ν)
x→x′

)

e−F
(ν)

x→x′

)

. (34)

The first term is calculated as follows

−
n
∑

x=0

px

(

nbath
∑

ν=1

n
∑

x′=0

W
(ν)
x→x′

(

− d

dt
F

(ν)
x→x′

)

e−F
(ν)

x→x′

)

=−
nbath
∑

ν=1

n
∑

x=0

n
∑

x′=0

px′W
(ν)
x′→x

(

d

dt
F

(ν)
x′→x

)

=−
nbath
∑

ν=1

∑

x,x′|x>x′

px′W
(ν)
x′→x

(

d

dt
F

(ν)
x′→x

)

−
nbath
∑

ν=1

∑

x,x′|x′>x

px′W
(ν)
x′→x

(

d

dt
F

(ν)
x′→x

)

=−
∑

(x′→x,ν)∈E

J
(ν)
x′→x

(

d

dt
F

(ν)
x′→x

)

= −
〈

dF

dt

〉

, (35)
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where we used F
(ν)
x′→x = −F (ν)

x→x′ and F
(ν)
x′→x′ = 0. The second term is also calculated as follows

−
n
∑

x=0

px

(

nbath
∑

ν=1

n
∑

x′=0

(

d

dt
W

(ν)
x→x′

)

e−F
(ν)

x→x′

)

=−
nbath
∑

ν=1

n
∑

x=0

n
∑

x′=0

px′W
(ν)
x′→x

1

W
(ν)
x→x′

(

d

dt
W

(ν)
x→x′

)

=−
nbath
∑

ν=1

∑

x,x′|x′ 6=x

px′W
(ν)
x′→x

1

W
(ν)
x→x′

(

d

dt
W

(ν)
x→x′

)

−
nbath
∑

ν=1

n
∑

x=0

pxW
(ν)
x→x

1

W
(ν)
x→x

(

d

dt
W (ν)

x→x

)

=−
nbath
∑

ν=1

∑

x,x′|x>x′

px′W
(ν)
x′→x

1

W
(ν)
x→x′

(

d

dt
W

(ν)
x→x′

)

+

nbath
∑

ν=1

n
∑

x=0

px





∑

x′ 6=x

d

dt
W

(ν)
x→x′





=−
nbath
∑

ν=1

∑

x,x′|x 6=x′

px′W
(ν)
x′→x

(

d

dt
ln(W

(ν)
x→x′)

)

+

nbath
∑

ν=1

∑

x,x′|x′ 6=x

px′W
(ν)
x′→x

(

d

dt
ln(W

(ν)
x′→x)

)

=

nbath
∑

ν=1

∑

x,x′|x′ 6=x

px′W
(ν)
x′→x

(

d

dt
∆σ

bath(ν)
x′→x

)

=

nbath
∑

ν=1

∑

x,x′|x>x′

px′W
(ν)
x′→x

(

d

dt
∆σ

bath(ν)
x′→x

)

−
nbath
∑

ν=1

∑

x,x′|x>x′

pxW
(ν)
x→x′

(

d

dt
∆σ

bath(ν)
x→x′

)

=
∑

(x′→x,ν)∈E

J
(ν)
x′→x

(

d

dt
∆σ

bath(ν)
x′→x

)

=

〈

d∆σbath

dt

〉

, (36)

where we used W
(ν)
x′→x′ = −∑x 6=x′ W

(ν)
x′→x, ∆σ

bath(ν)
x′→x = −∆σ

bath(ν)
x→x′ and ∆σ

bath(ν)
x′→x′ = 0.

By using F
(ν)
x′→x = ∆σ

bath(ν)
x′→x′ +∆σsys

x′→x′ , we obtain an expression

ds2

dt2
=

〈

d∆σbath

dt

〉

−
〈

dF

dt

〉

= −
〈

d∆σsys

dt

〉

. (37)

Let (λ1, . . . , λn′) be the set of parameters such as control parameters. We also obtain the definition of the Fisher
information metric [3]

gij = E

[(

∂ ln p

∂λi

)(

∂ ln p

∂λj

)]

=

n
∑

x=0

px

[(

∂ ln px
∂λi

)(

∂ ln px
∂λj

)]

(38)
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from the result (37),

ds2

dt2
=

〈

d∆σbath

dt

〉

−
〈

dF

dt

〉

=−
∑

(x′→x,ν)∈E

J
(ν)
x′→x

[

1

px′

dpx′

dt
− 1

px

dpx
dt

]

=−
nbath
∑

ν=1

nbath
∑

ν′=1

n
∑

x=0

n
∑

x′=0

n
∑

x′′=0

px′W
(ν)
x′→x

[

1

px′

W
(ν′)
x′′→x′px′′ − 1

px
W

(ν′)
x′′→xpx′′

]

=

n
∑

x=0

px

[

nbath
∑

ν=1

n
∑

x′=0

px′W
(ν)
x′→x

px

nbath
∑

ν′=1

n
∑

x′′=0

px′′W
(ν′)
x′′→x

px

]

=

n
∑

x=0

px

(

d ln px
dt

)2

=
n
∑

x=0

px





n′

∑

i=1

∂ ln px
∂λi

dλi
dt





2

=

n′

∑

i=1

n′

∑

j=1

dλi
dt
gij
dλj
dt

, (39)

where we used
∑n

x=0W
(ν)
x′→x = 0 and the master equation dpx/dt =

∑nbath

ν=1

∑n
x′=0 px′W

(ν)
x′→x. This result is consistent

with the following calculation about the Fisher information metric

ds2 =

n
∑

x=0

px(d ln px)
2 =

n
∑

x=0

px





n′

∑

i=1

(

∂ ln px
∂λi

)

dλi





2

=

n′

∑

i=1

n′

∑

j=1

gijdλidλj . (40)

III. Linear irreversible thermodynamic interpretation of information geometry

We here discuss a stochastic thermodynamic interpretation of information geometry in a near-equilibirum sys-
tem, where the entropy production rate is given by the second order expansion for the thermodynamic flow (or the
thermodynamic force). This second order expansion is well known as linear irreversible thermodynamics [4].

If we assume F
(ν)
x′→x = 0, we have J

(ν)
x′→x = 0. Thus, we have a linear expansion of thermodynamic force F

(ν)
x′→x in

terms of the thermodynamic flow J
(ν)
x′→x for a near-equilibrium condition (i.e., F

(ν)
x′→x ≃ 0 for any x and x′)

F
(ν)
x′→x = ln

(

1 +
J
(ν)
x′→x

W
(ν)
x′→xpx

)

= α
(ν)
x′→xJ

(ν)
x′→x + o(J

(ν)
x′→x), (41)

α
(ν)
x′→x :=

1

W
(ν)
x′→xpx

∣

∣

∣

∣

∣

F
(ν)

x′
→x

=0

. (42)

We call this coefficient α
(ν)
x′→x as the Onsager coefficient of the edge (x′ → x, ν). The symmetry of the coefficient

α
(ν)
x′→x = α

(ν)
x→x′ holds due to the condition F

(ν)
x′→x = 0.

If we consider the Kirchhoff’s current law in a stationary state, the linear combination of the coefficient α
(ν)
x→x′ leads

to the Onsager coefficient [4]. Let {C1, . . . , Cm} be the cycle basis of the Markov network for the master equation.
The thermodynamic force of the cycle F (Ci) is defined as

F (Ci) =
∑

(x′→x,ν)∈E

S({x′ → x, ν}, Ci)F
(ν)
x′→x (43)



11

where

S({x′ → x, ν}, Ci) =











1 ({x′ → x, ν} ∈ Ci)

−1 ({x→ x′, ν} ∈ Ci)

0 (otherwise)

. (44)

The thermodynamic flow of the cycle J(Ci) is defined as

J
(ν)
x′→x =

m
∑

i=1

S({x′ → x, ν}, Ci)J(Ci). (45)

We then obtain the linear relationship F (Cj) =
∑m

i=1 LjiJ(Ci) (or J(Cj) =
∑m

i=1 L
−1
ji F (Ci)) with the Onsager

coefficient

Lij =
∑

(x′→x,ν)∈E

α
(ν)
x′→xS({x′ → x, ν}, Ci)S({x′ → x, ν}, Cj), (46)

for a near-equilibrium condition, the second law of thermodynamics

0 ≤ Σ̇tot

=
∑

(x′→x,ν)∈E

J
(ν)
x′→xF

(ν)
x′→x

=
∑

(x′→x,ν)∈E

m
∑

i=1

S({x′ → x, ν}, Ci)J(Ci)F
(ν)
x′→x

=

m
∑

i=1

J(Ci)F (Ci),

=

m
∑

j=1

m
∑

i=1

LijJ(Ci)J(Cj),

=

m
∑

j=1

m
∑

i=1

L−1
ij F (Ci)F (Cj),

(47)

and the Onsager reciprocal relationship Lij = Lji. This result gives the second order expansion of the entropy

production rate Σ̇tot for the thermodynamic flow J (or the thermodynamic force F ) in a stationary state. For m = 2,
the second law of thermodynamics L11F (C1)

2+L22F (C2)
2+2L12F (C1)F (C2) ≥ 0 is then given by L11 ≥ 0, L22 ≥ 0,

and L11L22 − L2
12 ≥ 0.

Here we newly consider the second order expansion of ds2 for the thermodynamic flow J (or the thermodynamic
force F ) in linear irreversible thermodynamics. In a near-equilibrium system, the square of line element ds is calculated
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as follows

ds2 =−
〈

d∆σsys

dt

〉

dt2

=−
∑

(x′→x,ν)∈E

J
(ν)
x′→x

[

1

px′

dpx′

dt
− 1

px

dpx
dt

]

dt2

=−
∑

(x′→x,ν)∈E

J
(ν)
x′→x

[

1

px′

nbath
∑

ν′=1

n
∑

x′′=0

J
(ν′)
x′′→x′ −

1

px

nbath
∑

ν′=1

n
∑

x′′=0

J
(ν′)
x′′→x

]

dt2

=
∑

(x′→x,ν)∈E

nbath
∑

ν′=1

n
∑

x′′=0

J
(ν)
x′→x

[

1

px
J
(ν′)
x′′→x − 1

px′

J
(ν′)
x′′→x′

]

dt2

=
∑

(x′→x,ν)∈E

nbath
∑

ν′=1

n
∑

x′′=0

J
(ν)
x′→x

[

1

px
J
(ν′)
x′′→x − 1

px′

J
(ν′)
x′′→x′

]

dt2

=

nbath
∑

ν=1

nbath
∑

ν′=1

n
∑

x=0

n
∑

x′=0

n
∑

x′′=0

[

J
(ν)
x′→xJ

(ν′)
x′′→x

px

]

dt2

=

nbath
∑

ν=1

nbath
∑

ν′=1

n
∑

x=0

n
∑

x′=0

n
∑

x′′=0

[

F
(ν)
x′→xF

(ν′)
x′′→x

α
(ν)
x′→xpxα

(ν′)
x′′→x

]

dt2. (48)

We here consider the situation that the time evolution of control parameters λ(x′,x,νx) is driven by the thermodynamic

force F
(νx)
x′→x = dλ(x′,x,νx)/dt. The square of line element can be written by the following Fisher information metric

ds2 =

nbath
∑

νx=1

n
∑

x=0

n
∑

x′=0

nbath
∑

νy=1

n
∑

y=0

n
∑

y′=0

g(x′,x,νx)(y′,y,νy)dλ(x′,x,νx)dλ(y′,y,νy) (49)

g(x′,x,νx)(y′,y,νy) =
δxy

α
(νx)
x′→xpxα

(νy)
y′→y

. (50)

This result implies that the Fisher information metric for control parameters λ(x′,x,νx) driven by the thermodynamic

force F
(νx)
x′→x = dλ(x′,x,νx)/dt is related to the Onsager coefficients of the edge α

(νx)
x′→x for a near-equilibrium condition.

Because the Cramér-Rao bound [3, 5] implies that the variance of unbiased estimator is bounded by the inverse of this

Fisher information metric, the Onsager coefficients of the edge α
(νx)
x′→x gives a lower bound of the variance of unbiased

estimator for control parameters driven by the thermodynamic forces in a near-equilibrium system.

IV. Detail of the three states model of enzyme reaction

Stochastic thermodynamics for the master equation is applicable to a model of chemical reaction [64]. We here
discuss the thermodynamic detail of the three states model of enzyme reaction discussed in the main text.

The master equation for Eq. (27) in the main text is given by

dpA
dt

= −(kAX+[X ] + kAB+[B])pA + kAB−pAB + kAX−pAX ,

dpAB

dt
= kAB+[B]pA − (kAB− + k−[X ])pAB + k+[B]pAX ,

dpAX

dt
= kAX+[X ]pA + k−[X ]pAB − (kAX− + k+[B])pAX , (51)
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where k−, kAB− and kAX− are given by the chemical potential differences

ln
kAX+

kAX−
= β∆µAX ,

ln
kAB+

kAB−
= β∆µAB,

ln
k+
k−

= β∆µ. (52)

We here assume that the sum of the concentrations [A] + [AB] + [AX ] = nA is constant. The probabilities
distributions pA, pAB, and pAX correspond to the fractions of pA = [A]/nA, pAB = [AB]/nA and pAX = [AX ]/nA,
respectively. From the master equation (51), we obtain the rate equations of enzyme reaction

d[A]

dt
= −(kAX+[X ] + kAB+[B])[A] + kAB−[AB] + kAX−[AX ],

d[AB]

dt
= kAB+[B][A]− (kAB− + k−[X ])[AB] + k+[B][AX ],

d[AX ]

dt
= kAX+[X ][A] + k−[X ][AB]− (kAX− + k+[B])[AX ]. (53)

which corresponds to the following enzyme reaction

A+X ⇋ AX,

A+B ⇋ AB,

AX +B ⇋ AB +X, (54)

where A is substrate, X is enzyme, AX is enzyme-substrate complex, and AB is product.
In this model, the stochastic entropy changes of thermal bath are also calculated as

∆σ
bath(1)
A→AB = β∆µAB + ln[B],

∆σ
bath(1)
AB→AX = −β∆µ− ln[B] + ln[X ],

∆σ
bath(1)
AX→A = −β∆µAX − ln[X ], (55)

which are the conventional definitions of the stochastic entropy changes of a thermal bath. In this model, the cycle
basis is given by one cycle {C1 = (A→ AB → AX → A)}. If the chemical potential change in a cycle C1 has non-zero
value, i.e., ∆µcyc := ∆µAB −∆µ−∆µAX 6= 0, the system in a stationary state is driven by the thermodynamic force

of the cycle F (C1) = F
(1)
A→AB +F

(1)
AB→AX +F

(1)
AX→A = β∆µcyc. In a numerical calculation, we set β∆µcyc = −2.5 6= 0.

Then we consider non-equilibrium and non-stationary dynamics in a numerical calculation.
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